If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12c^2+120c=0
a = -12; b = 120; c = 0;
Δ = b2-4ac
Δ = 1202-4·(-12)·0
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-120}{2*-12}=\frac{-240}{-24} =+10 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+120}{2*-12}=\frac{0}{-24} =0 $
| 3w-10+w=90w= | | 4-x=-5+8 | | Y/2+17=-y/3-21 | | ½(2n-5)=4n-1 | | z/5+6=-39 | | X+8=4x-13=180 | | 9*(5+x)-4x=6x-57 | | 3/4x-7=2x=12 | | 18j-3j-16j=9 | | 132=x+52 | | 115+x+160=180 | | 7-7a=7(1-a) | | 14=11-x/3 | | 2.1x+16=-100 | | 66=2(x+52) | | 1-5.3n=1.2-5.3n | | x/12+145=1,345 | | 66=x+52 | | 10n^2=-12n-8 | | 8x+9=5x+5 | | 4x-5=4x19-5 | | R^3+7r+14=0 | | -42x-3=-7(6x+8)+53 | | 50+x+20=180 | | (4p-4)+(-7p-7)=0 | | 4(2x-3)=-3(x+5) | | 5k=2(1+4k)-7 | | v/5-9=11 | | 16+3l=4l+5l-2 | | x/12+ 145=1,345 | | y=-10(-5) | | x+17=2x-14 |